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Abstract: - In order to mitigate the negative impact of a non-stationary signal on the adaptive filter coefficients 

and to improve the trading off between convergence rate and steady-state error at various input levels, a new time 

adjusting step size LMS algorithm is proposed. The theoretical analysis of its mean square deviation (MSD) is 

investigated in this paper. Its closed-form expressions of mean square deviation for the transient and steady-state 

stages are also estimated. This new approach aims to reduce the steady-state MSD of the coefficients at high 

levels of input power signal without a scarifying on the speed of convergence as common in the conventional 

LMS and other VSSLMS approaches. We do so by developing an individual time adjusting step size based 

logarithmic function for each tap of the adaptive filter. It is found that the steady-state MSD depends directly on 

the minimum step size value when the reduction rate of step size is faster than the changing rate of the optimal 

coefficients. Based on the implementation of the adaptive noise cancellation, simulation results show the 

superiority of the proposed technique in term of possessing the lowest MSD at various input variances compared 

with others. Moreover, the proposed technique outperforms the compared algorithms in the matter of tracking a 

time-vary noise channel. 
 

Key-Words: - Adaptive noise canceller, LMS algorithm, Variable step size LMS algorithms, Mean square 

Deviation MSD. 

 

1. Introduction 
Adaptive filtering has drawn attention much 

research interest in both theoretical and implemented 

aspects for a long time.  In the context of voice 

communication applications, eliminating the noise 

from the desired speech is the important operation. 

This problem arises in many situations, such as 

helicopters, airplanes, and automobiles, where the 

speech and audio signals are corrupted by noise. 

Adaptive Noise cancellation (ANC) has attracted 

much attention as a model to eliminate noise added 

in the speech signal and improve the quality of speech 

and audio signals. Removing the noise can be 

achieved by two approaches, the two-microphone 

approach, and the single microphone approach. Two-

microphone approach can deliver a better 

performance in term of noise cancelling than a single 

microphone approach [1-2]. However, the 

performance of such a two-microphone approach is 

limited by several conditions such as reverberation 

which arises from high miss-adjustment errors, and 

signal distortion which initiates from a correlation of 

some components of the input filter and the original 

speech signal [3-4]. There has been a tremendous 

amount of research paper published on adaptive noise 

cancellation using both single and two-microphones 

approaches [5-9].          

Many algorithms have been proposed for adaptive 

filters to adapt their impulse response. The LMS 

algorithm, which is characterized by a low 

complexity, ease of implementation, and operational 

stability, is deemed to be one of the most attractive 

algorithms in the adaptive signal processing area [3, 

10]. However, this algorithm has some drawbacks 

such as slow convergence rate, a high value of 

steady-state miss-adjustment, and fixed learning rate. 

The learning rate, which is sometimes named step 

size µ, defines the convergence time of the filter 

coefficients and also the steady-state mean square 

deviation. The convergence time of this algorithm is 

adversely proportional to the step size. A large step 

size is usually significant in situations contained 

nonstationary input signals but on the account of 

increasing the steady-state mean square deviation. 

This essential drawback leads to the need for a 

compromise to take place between the speed of 

convergence and steady-state miss-adjustment [11-

12]. The fixed step size of LMS makes the 

compromise between these factors is complicated 

[13]. To overcome the negative effect of the fixed 

step size LMS-based algorithms, many approaches 
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utilizing variable step size are proposed. These 

approaches are based on utilizing a large learning rate 

values when the filter coefficients are far from the 

optimal coefficients, thus accelerating the 

convergence rate of the algorithm. When the filter 

coefficients are near from the optimal coefficients, 

small learning rate values are utilized to attain a low 

level of misadjustment [13-20]. However, these 

approaches need to be enhanced to deliver a better 

performance according to several essential 

challenges associated with these approaches. In [14], 

the authors proposed a variable step size LMS 

algorithm that uses the sign of the gradient 

component of the squared error to control the value 

of the step size. But this approach suffers from a step 

size instability in high noise environments. In [16], 

the author proposed a time-varying step size using the 

Sigmoid function, the approach utilizes a large step 

size in the initial stage of adaption process to speed 

up the convergence time and then the step size is 

modified to a smaller value progressively, however, 

this algorithm introduces a high value of steady-state 

MSD. In [17], the step size updating equation counts 

on the square of the error signal resulting in a very 

high sensitivity to the value of error signal. A high 

input noise impacts substantially on the final 

outcome of this approach. In [18], the step size 

parameter is adjusted according to the square of the 

time-averaged estimate of the autocorrelation of error 

function 𝑒(𝑛) and 𝑒(𝑛 − 1). The main defects of this 

approach are that the demanding for more parameters 

to be modified to get the optimum values, and 

preserving these optimum values for various levels of 

input power signal without modifying gives a poor 

performance. In addition to that, this technique 

introduces a significant degradation in its steady-state 

error when the measured noise is highly correlated 

making the possibility of tackling various situations 

is impossible. In [19], the step size of this approach 

based on decaying the traditional LMS step size in an 

exponential pattern; therefore, this algorithms 

inherits the defects of the previous approaches. 

Moreover, the parameters of this algorithm demand a 

high concentration to achieve a good fulfillment at a 

certain input signal. In addition to that, the output 

signal of this approach goes into the instability area 

in high noise situations. Motivating by these intrinsic 

challenges and others, a new approach attempts to 

overcome some or all of these challenges was 

proposed.                 

In this work, we propose a new time adjusting step 

size LMS algorithm that is essentially modified 

according to the logarithmic function of the power of 

input excitation. The purpose of this technique was 

mainly focused on solving two intrinsic challenges 

faced by LMS and other variable step size 

algorithms.  Firstly, maintaining a low level of mean 

square deviation at high levels of input power and, 

secondly, improving the trading-off between 

achieving fast convergence rate and low steady-state 

mean square deviation (maladjustment) 

simultaneously. The idea behind the proposed 

approach is to dedicate a particular step size for each 

coefficient of the adaptive filter that adapts according 

to the logarithmic value of two main factors, which 

are total input signal and input excitation associated 

to that coefficient.   

A valuation between our proposed, LMS, NLMS 

[10], VSSLMS [17], RVSSLMS [18], and TVLMS 

[19] algorithms is carried out to establish a fair 

evaluation by comparing our technique with other 

approaches utilized either input or error signals in 

their step size update equations. Computer 

simulations are realized using real speech signal. 

White Gaussian noise with various variances is 

mixed with the speech signal after passing through 

low pass fitters that mimics the actual system of noise 

path. 

 

 

2. The Concept of Adaptive Noise 

Cancellation (ANC) 
A typical two-microphone adaptive noise 

cancellation, depicted in Fig. 1, consists of two 

inputs, primary input, and reference input. The 

primary input signal, 𝑑(𝑛), consists of the original 

speech signal, 𝑠(𝑛), corrupted by an additive 

noise 𝑣(𝑛). The reference input signal, 𝑥(𝑛), is the 

input to the adaptive filter and noise path channel  

ℎ(𝑛). The noise signal, 𝑥(𝑛), is uncorrelated with the 

signal 𝑠(𝑛) but correlated with the noise, 𝑣(𝑛), 

received by primary input sensor. This correlation is 

important for the adapting algorithm in order to 

remove the noise from the speech signal. The noise 

reference, 𝑥(𝑛), is adjusted by filter coefficients to 

generate an output signal, 𝑦(𝑛), that 

approximates,  𝑣(𝑛), signal as possible as. This 

output is subtracted from the primary input, 𝑑(𝑛) =
𝑠(𝑛) +  𝑣(𝑛), to produce the error signal 𝑒(𝑛) [10].  

𝑒(𝑛) = 𝑠(𝑛) +  𝑣(𝑛) − 𝑦(𝑛)                                           (1) 

Then, the error signal is employed to adjust the 

weights of the adaptive filter using a LMS-based 

adaptive algorithm such that the error signal is 

progressively minimized. By squaring and taking the 

expectation E [.] of both sides of (1), and realizing 

that 𝑠(𝑛) is uncorrelated with 𝑦(𝑛), 𝑣(𝑛), and 

𝑣(𝑛) − 𝑦(𝑛), yields [10]. 
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𝐸[𝑒2(𝑛)] = 𝐸[𝑠2(𝑛)] + 𝐸[(𝑣(𝑛) − 𝑦(𝑛))2]           (2) 

The signal power 𝐸[𝑠2(𝑛)] will be unaltered by 

filtering process; therefore, the filter is adjusted to 

minimize 𝐸[𝑒2(𝑛)] by minimizing the correlated 

noises 𝐸[(𝑣(𝑛) − 𝑦(𝑛))2]. The output filter 𝑦(𝑛) is 

then a best least-squares estimate of the primary 

noise 𝑣(𝑛). 

Signal 
Source

s(n)

Noise 
Path
h(n)

Noise Source

v(n)

x(n)

d(n) = s(n) + v(n)
   

   
   

   
   

e(
n) y(n)

Reference Input

Primary Input
e(n)

e(n)

-

Adaptive Filter

w(n)

 
Fig. 1. Adaptive noise canceller model. 

 

 

3. Traditional LMS 
The LMS algorithm is a kind of adaptive 

algorithm known as stochastic gradient-based 

algorithms as it utilizes the gradient vector of the 

filter weights to converge on the optimal wiener 

solution. The filter coefficients of the adaptive filter 

are iteratively adapted in each iteration according to 

the following formula [21]. 

𝑊(𝑛 + 1) = 𝑊(𝑛) + 2µ𝑒(𝑛)𝑋(𝑛)                          (3) 

where 𝑋(𝑛) is the input vector such that 

𝑋(𝑛)=[𝑥(𝑛) 𝑥(𝑛 − 1) 𝑥(𝑛 − 2) … . . 𝑥(𝑛 − 𝐿 +
1)]𝑇. The vector 𝑊(𝑛) =
 [ 𝑤0(𝑛) 𝑤1(𝑛) 𝑤2(𝑛) . . . 𝑤𝐿−1(𝑛)]𝑇denotes to the 

coefficients of the adaptive filter. The step size 

parameter, μ, is usually a small positive constant and 

the adaption process affected by the value of this step 

size parameter. In order to assure stability (or 

convergence) of the LMS algorithm; the step size 

parameter is bounded by the following equation [10]: 

0 < µ <
2

𝑇𝑟.[𝑅]
                                                                           (4) 

where 𝑇𝑟. [𝑅] is the trace of the input 

autocorrelation matrix 𝐸[𝑋(𝑛)𝑋𝑇(𝑛)]. 

 

 

4. Variable Step size LMS Algorithms 
The step size adjusting equations of the compared 

algorithms are summarized in Table 1. 

Table 1. Variable step size LMS Algorithms 
Algorithm Step size update equation 

NLMS[8] µ

𝜷 + 𝑿𝑻(𝒏)𝑿(𝒏)
 

Β > 0 and    0 < µ < 1 

VSSLMS[17] µ𝒏+𝟏 = 𝜶µ𝒏 + 𝜸𝒆𝒏
𝟐 

0< α < 1      γ > 0 

RVSSLMS [18] 𝐩(𝒏)  =  𝜷 𝐩(𝐧 − 𝟏) + (𝟏 − 𝜷)𝐞(𝐧)𝐞(𝐧 − 𝟏) 
µ𝒏+𝟏 = 𝜶µ𝒏 + 𝜸𝒑𝒏

𝟐 
0< α < 1      γ > 0    0< 𝜷 < 1 

TVLMS [19] µ𝒏 = 𝜶(𝒏)µ𝟎 

𝜶(𝒏) =
𝟏

𝑪(𝟏+𝒂𝒏𝒃)
 

𝑪, 𝒂, 𝒃 are positive constants 
𝑪 > 𝟏 and µ𝟎 is LMS step size 

 

 

5. Proposed Algorithm 
This paper proposes a new strategy to adjust the 

step size of the standard LMS algorithm by utilizing 

log-based time-varying step size. This new variable 

step size, which is called Absolute Weighted Input 

using Log function (AWILOG), is proposed to 

function with a consistent performance for a feasible 

range of variances of the input excitation. This 

approach directly infers from the input signal to make 

the coefficients adjusting equation is adversely 

influenced by the power of the input signal as will be 

demonstrated in the step size adaption equation.   It 

utilized a variable step size that will be adapted based 

on the absolute value of the current and the previous 

value of the input signal with a variable parameter 

𝜑(𝑛) that depends on a logarithmic function as given 

in equations (5), and (6) of Table 2. Table 2 illustrates 

the iterative steps of the proposed technique as a 

flowchart scheme. 

Equation (5) exhibits that, each coefficient of the 

adaptive filter has a specific step size adapts 

according to the current step size and the 

corresponding input signal related to that coefficient. 

It also shows that initiating with a large step size is 

essential to increase the convergence speed and 

progressively decreasing it to achieve its minimum 

value, to obtain a low level of mean square deviation 

(sometimes called maladjustment). The subtraction 

process is necessary to force the next step 𝜇𝑖(𝑛 + 1) 

size to be smaller than the current step size 𝜇𝑖(𝑛). To 

assure decreasing in the next step size and attaining 

the minimum step size 𝜇𝑚𝑖𝑛 value with a lower 

number of iterations the absolute function is 

important. The adaptive filtering process with a 

particular step size for each coefficient is intended to 

enhance the weight tracking ability of the adaptive 

filter of the actual system by delivering various scales 

of step size for each coefficient.  
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The variable 𝜑(𝑛) consists of two effective 

factors, the first one is the constant factors (𝜁, γ) and 

the second one is the variable factor  𝑋𝑇(𝑛)𝑋(𝑛). A 

small value of 𝜑(𝑛) increases the number of iteration 

required to achieve the minimum step size (𝜇𝑚𝑖𝑛). On 

the contrary, a large value of 𝜑(𝑛) decreases the 

number of iteration needed to reach minimum step 

size (𝜇𝑚𝑖𝑛).  

Table 2. Proposed Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The presence of the parameter γ in the step size 

adjusting equation is to avoid the restrictive values of 

the natural logarithmic function. The constant 𝜁 is 

involved to preserve the coefficients adjusting 

process in the stable area of the adaption process and 

prevent it to take place in the divergent region. The 

output accomplishment of the proposed technique 

delivers an approximately coherent performance for 

a reasonable range of constant 𝜁. These abilities are 

based on the tackling of several input scales in the 

logarithmic function of the step size adjusting 

equation. 
 

 

6. Mean Square Deviation Analysis of 

Proposed Algorithm 
The steady-state mean square deviation (MSD) 

has been addressed by many researchers such as in 

[3], [10], and [22]. In these works, the conventional 

LMS and NLMS algorithms are presented. To 

illustrate our work using MSD, we substitute µ(𝑛) in 

place of µ of the conventional algorithms since the 

lim
𝑛→∞

𝐸[µ(𝑛 + 1)] → 𝜇𝑚𝑖𝑛 at the steady-state. 

Furthermore, we assume a time-invariant transfer 

function for the noise path of ANC to facilitate the 

derivation of the MSD of the proposed algorithm. 

The MSD is defined in [1], [2], and [23] as: 

𝑀𝑆𝐷(𝑛) = 𝑇𝑟{𝐸[|𝜀(𝑛)|2]}                                              (7) 

where 𝜀(𝑛) = 𝑾(𝑛) − 𝑊𝑜𝑝𝑡 and subtitling this into 

equation (7), we obtain,  

𝑀𝑆𝐷(𝑛) = 𝑇𝑟 {𝐸 [( 𝑾(𝑛) − 𝑊𝑜𝑝𝑡) (𝑾(𝑛) −

𝑊𝑜𝑝𝑡)
𝑇

]}                                                                     (8) 

The output of the canceller system can be 

expressed in terms of the error weight vector, 𝜀(𝑛),  

𝑒(𝑛) = 𝑠(𝑛) + 𝑋𝑇(𝑛)𝜀(𝑛)                                                (9) 

The updated weight vector for the proposed 

algorithm can be expressed in term of the error 

weight vector, given in equation (7) after substituting 

in equation (3) with variable step size instead of 

constant step size: 

𝜀(𝑛 + 1) = 𝜀(𝑛) − 𝑀(𝑛)𝑋(𝑛)[𝑠(𝑛) +
  𝑋𝑇(𝑛)𝜀(𝑛)]                                                                    (10) 

where 𝑀(𝑛) is a diagonal matrix of the step size 

values at each tap of the adaptive filter as given in 

equation (6). Post-multiply equation (10) by 𝜀(𝑛 +
1)𝑇 and take the expectation of both side we get: 

𝐸{(𝜀(𝑛 + 1)𝜀(𝑛 + 1)𝑇}
= 𝐸{𝜀(𝑛)𝜀(𝑛)𝑇} − 2𝐸{𝑀(𝑛)}𝐸{ 

𝑋(𝑛)𝑋𝑇(𝑛)}𝐸{𝜀(𝑛)𝜀(𝑛)𝑇} +
𝐸{𝑀2(𝑛)}𝐸{𝑋(𝑛)𝑋𝑇(𝑛)𝐸{𝜀(𝑛)𝜀(𝑛)𝑇}𝑋(𝑛)𝑋𝑇(𝑛)} +
𝐸{𝑀2(𝑛)}𝐸{𝑋(𝑛)𝑋𝑇(𝑛)}𝐸{𝑠2(𝑛)}𝐼                         (11) 

START 

INPUT VECTOR 

 𝑿(𝒏)=[𝒙(𝒏) 𝒙(𝒏 − 𝟏) 𝒙(𝒏 − 𝟐) … . . 𝒙(𝒏 − 𝑳 + 𝟏)]𝑻 

WEIGHT VECTOR 

𝑾(𝒏) =  [ 𝒘𝟎(𝒏) 𝒘𝟏(𝒏) 𝒘𝟐(𝒏) . . . 𝒘𝑳−𝟏(𝒏)]𝑻 

INITIALIZATION VECTOR AND CONSTANT 

Initial Weight Vector 

𝑾(𝒏) = [𝟎 𝟎 𝟎 … … … … … … … … 𝟎]𝑻 

Initial Step size for Each Tap 

𝝁𝑰𝒏𝒊𝒕𝒊𝒂𝒍(𝒏) = [µ𝑴𝒂𝒙,𝟎 µ𝑴𝒂𝒙,𝟏 µ𝑴𝒂𝒙,𝟐 … … µ𝑴𝒂𝒙,𝑳−𝟏] 
Constant  

0 < 𝜁 < 1 

At Each Iteration 

𝒚(𝒏)  = 𝑿𝑻(𝒏)𝑾(𝒏) 
𝒆(𝒏)  =  𝒅(𝒏) − 𝒚(𝒏) 
𝑾(𝒏 + 𝟏) = 𝑾(𝒏) + 𝟐𝑴(𝒏)𝒆(𝒏)𝑿(𝒏)        

𝑴(𝒏) = 𝒅𝒊𝒂𝒈{µ𝟎(𝒏), µ𝟏(𝒏), µ𝟐(𝒏), µ𝑳−𝟏(𝒏)} 

Step size Update  

𝝁𝒊(𝒏 + 𝟏) = µ𝒊(𝒏) − |𝒙(𝒏 − 𝒊) ∗ 𝝋(𝒏)|                                     (5)                                                                                              

𝝋(𝒏) =  𝜻 ∗ (𝐥𝐨𝐠(𝜸 + 𝑿𝑻(𝒏)𝑿(𝒏)))                                        

For        𝒊  𝟎 , 𝟏, 𝟐, 𝟑, . , 𝑳 − 𝟏 

And  

𝝁𝒊(𝒏 + 𝟏) = {

    𝝁𝒎𝒂𝒙         𝒊𝒇    𝝁𝒊(𝒏 + 𝟏)   >  𝝁𝒎𝒂𝒙

    𝝁𝒎𝒊𝒏          𝒊𝒇    𝝁𝒊(𝒏 + 𝟏)  <  𝝁𝒎𝒊𝒏  
𝝁𝒊(𝒏 + 𝟏)                       𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

            (6) 
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Assuming 𝐸{𝑀2(𝑛)} = 𝑀2(𝑛) and 𝐸{𝑀(𝑛)} =
𝑀(𝑛), this assumption is valid in the transient phase 

of updating step size equation because our proposed 

algorithm starts initially with maximum step size 

µ𝑀𝑎𝑥 and gradually decreases to minimum step size 

µ𝑚𝑖𝑛 with a few numbers of iterations based on input 

power signal. Therefore, equation (11) becomes  

𝐸{(𝜀(𝑛 + 1)𝜀(𝑛 + 1)𝑇}
= 𝐸{𝜀(𝑛)𝜀(𝑛)𝑇} − 2𝑀(𝑛)𝐸{ 

𝑋(𝑛)𝑋𝑇(𝑛)}𝐸{𝜀(𝑛)𝜀(𝑛)𝑇} +
𝑀2(𝑛)𝐸{𝑋(𝑛)𝑋𝑇(𝑛)𝐸{𝜀(𝑛)𝜀(𝑛)𝑇}𝑋(𝑛)𝑋𝑇(𝑛)} +
𝑀2(𝑛)𝐸{𝑋(𝑛)𝑋𝑇(𝑛)}𝐸{𝑠2(𝑛)}𝐼                                (12) 

Carrying further simplifications and using 

statically independent assumptions, we produce: 

𝐾′(𝑛 + 1) = 𝐾′(𝑛) − 𝑀(𝑛)[𝐷. 𝐾′(𝑛) + 𝐾′(𝑛). 𝐷] 
+2𝑀2(𝑛). 𝐷. 𝐾(𝑛). 𝐷 +

𝑀2(𝑛)𝐷. 𝑇𝑟{𝐷. 𝐾′(𝑛)} + 𝑀2(𝑛). 𝐸{𝑠2(𝑛)}. 𝐷    (13)                     

where D is a diagonal matrix of eigenvalues of 

the 𝐸{𝑋(𝑛)𝑋𝑇(𝑛)} = 𝑇𝐷𝑇𝑡,𝑇𝑇𝑡 = 1, 𝐾′(𝑛 + 1) =
𝐸{(𝜀′(𝑛 + 1)𝜀′(𝑛 + 1)𝑇} and 𝜀′(𝑛 + 1) = 𝑇𝑡𝜀(𝑛 +
1). 𝑀𝑆𝐷(𝑛) Equals to the trace of the above 

equation 𝑇𝑟{𝐾′(𝑛 + 1)}.  

Taking the diagonal elements of 𝐾′(𝑛 + 1) and 

constructing a vector of these elements, we obtain: 

𝑘(𝑛 + 1) = [𝑃 + 𝑀2(𝑛). 𝜆. 𝜆𝑇]. 𝑘(𝑛) +
𝑀2(𝑛). 𝐸{𝑠2(𝑛)}. 𝜆                                                    (14) 

where 𝑘(𝑛 + 1) is a vector of the variance of each tap 

of the adaptive filter.  P is a diagonal matrix of 

elements 

 𝜌𝑖 = 1 − 2µ(𝑛). 𝜆𝑖 + 2µ𝑖
2(𝑛). 𝜆𝑖

2   
and 𝜆 is a vector of the eigenvalues of the 

𝐸{𝑋(𝑛)𝑋𝑇(𝑛)} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 0, … . . , 𝐿 − 1. 

We follow [3] and [10], to simplify equation (14) 

to get 𝑀𝑆𝐷(𝑛) at steady-state as: 

𝑀𝑆𝐷(∞) ⋍ 𝑀2(𝑛). 𝐸{𝑠2(𝑛)}. [𝐼 − 𝑃 +
𝑀2(𝑛). 𝜆. 𝜆𝑇]−1. 𝜆                                                    (15) 

At the steady-state stage, the step size of the 

proposed algorithm will be at its minimum, 𝜇𝑚𝑖𝑛. 

The above equation becomes    

𝑀𝑆𝐷(∞) ⋍ 𝑀𝑚𝑖𝑛
2 . 𝐸{𝑠2(𝑛)}. [𝐼 − 𝑃 +

𝑀𝑚𝑖𝑛
2 . 𝜆. 𝜆𝑇]−1. 𝜆                                                      (16) 

According to equation (15), when the step size is 

large, 𝑀2(𝑛) enlarges  𝐸{𝑠2(𝑛)} and thus forces 

𝑀𝑆𝐷 to mimic 𝑠(𝑛). That means a large power of 

𝑠(𝑛) will deviate 𝑊(𝑛) from optimal solution and 

will fall in the unstable region. Conversely, small step 

size will cause 𝑀𝑆𝐷 to converge to a minimum value 

even with a large value of 𝑠(𝑛).  

It is also worthy of noting that this is in contrast 

to the fact that a small value of the step size increases 

the convergence time which is a major drawback that 

most common fixed and variable step size algorithms 

suffer from. Our proposed algorithm successfully 

overcomes this drawback by initiating a large value 

of step size 𝑀𝑚𝑎𝑥
2  to accelerate the convergence rate 

and end the adaption process by 𝑀𝑚𝑖𝑛
2  to attain 

minimum 𝑀𝑆𝐷(∞). 

Equation (16) illustrates the contribution of the 

proposed algorithm to maintain MSD at a minimum 

level at steady-state. We also would like to point that 

the value of 𝑀𝑆𝐷(∞) will no more be impacted by 

the variation of noise power , 𝑥(𝑛), or the power of 

the desired signal, 𝑠(𝑛), due to having the minimum 

value of step size at steady-state.  Also, each tap of 

has its own step size keeping the adaptation process 

independent of each other. Consequently, each tap 

exhibits a different number of iterations to achieve its 

minimum step size 𝜇𝑚𝑖𝑛, which leads to a fast 

convergence rate and a low level of miss-adjustment 

at steady-state. 

The importance of equation (16) will be noticed 

in a time-varying channel noise where arriving at the 

minimum step size of each tap individually is truly 

crucial. This result enables us to control the value of 

the variance around the optimal solution of the 

weight vector as will be shown the in simulation 

results. 

It is important to mention that, the step size 

stability condition for the proposed technique is the 

same as the conventional LMS algorithm but in mean 

value and individually as depicted in equation (17):  

0 < 𝐸[µ𝑖(𝑛)] <
2

𝑇𝑟.[𝑅]
                                                      (17) 

 
In order to investigate the mean behavior of the 

proposed time varying step size, taking the 

expectation value of equation (5): 

𝐸[𝜇𝑖(𝑛 + 1)] = 𝐸[µ𝑖(𝑛)] − 𝐸[|𝑥(𝑛 −
𝑖). 𝜁. (𝑙𝑜𝑔(𝛾 + 𝑋𝑇(𝑛)𝑋(𝑛)))|]                                           (18) 

Taylor series can be used to simplify the log-term 

of equation (18) as follow: 

𝐸[𝜇𝑖(𝑛 + 1)] = 𝐸[µ𝑖(𝑛)] − 𝐸[|𝑥(𝑛 −

𝑖). 𝜁. (𝑋𝑇(𝑛)𝑋(𝑛) −
(𝑋𝑇(𝑛)𝑋(𝑛))2

2
)|]                              (19) 
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By assuming the statistical independence between 

individual input signal, 𝑥(𝑛 − 𝑖), and the total input 

power  𝑋𝑇(𝑛)𝑋(𝑛), equation (19) becomes: 

𝐸[𝜇𝑖(𝑛 + 1)] = 𝐸[µ𝑖(𝑛)] − 𝐸[|𝑥(𝑛 −
𝑖)|]. 𝑇𝑟. {𝑇𝐷𝑇𝑡} +

    𝐸 [|
𝑥(𝑛−𝑖)

2
|] 𝐸[|(𝑋𝑇(𝑛)𝑋(𝑛))2|]                       (20) 

For simplicity, we have used the assumption of, 

𝐸[|(𝑋𝑇(𝑛)𝑋(𝑛))2|] = (𝑋𝑇(𝑛)𝑋(𝑛))2 

𝐸[𝜇𝑖(𝑛 + 1)] = 𝐸[µ𝑖(𝑛)] − 𝐸[|𝑥(𝑛 −

𝑖)|]. 𝑇𝑟. {𝑇𝐷𝑇𝑡} + 𝐸 [|
𝑥(𝑛−𝑖)

2
|] (𝑋𝑇(𝑛)𝑋(𝑛))2    (21) 

Two important points, which conclude the main 

improvements of proposed technique, can be 

deduced from equation (21) as the following. Firstly, 

the eigenvalue of each tapped delay input signal 

controls, individually, the reduction speed of the 

underlying step size. Secondly, the number of 

iterations required to achieve minimum step size for 

each coefficient, individually, depends on the amount 

of the eigenvalue corresponding to that coefficient. 

Consequently, this action determines the availability 

of large step sizes during the adaptation process to 

deliver a fast convergence rate while maintaining low 

steady-state error at various levels of input excitation.   

 

 

7. Simulation Results 
In the context of adaptive noise cancellation 

shown in Fig. 1, the achievement of the proposed, 

traditional LMS and others VSSLMS algorithms are 

evaluated in this section. This evaluation is 

performed in terms of mean square deviation, noise 

path tracking, the error between the original speech 

signal and cleaned speech signal, and MSE learning 

curves of the list of compared algorithms. The 

parameters of the approaches are selected by doing 

many simulations in order to confirm a fair 

comparison and achieve a better accomplishment in 

terms of fast convergence rate and low 

maladjustment for compared algorithms. The facility 

of the proposed algorithm creates a flexible strategy 

that makes the selecting of the constant 𝜁 is easy 

because any value for this parameter in the 

reasonable range presents an acceptable achievement 

of the proposed technique. Conversely, parameters 

selection with respect to other algorithms (LMS, 

VSSLMSs) demands an optimization process to 

choose the appropriate value. We do so because those 

algorithms cannot produce a good performance with 

various variances of input (reference noise here) 

without adjusting their parameters in each input 

power (this reason makes the proposed technique is 

truly very robust).  

The optimum step size for the standard LMS and 

NLMS [10] was chosen by trial and error to be 0.09 

and 0.025 respectively. The parameter values for the 

proposed algorithm of 𝜇𝑚𝑎𝑥 and 𝜇𝑚𝑖𝑛 were chosen 

to be 0.09 and 0.0005 respectively and the constants 

(𝜁=0.00015, γ=0.8). The constant values for the 

VSSLMS [17] of 𝜇𝑚𝑎𝑥 and 𝜇𝑚𝑖𝑛 were chosen to be 

0.09 and 0.0005 respectively and the constants (γ, α) 

to be (0.007, 0.99) respectively. The optimum 

constant values (𝜇𝑚𝑎𝑥, 𝜇𝑚𝑖𝑛, γ, α, β) for the 

RVSSLMS [18] was picked up to be (0.09, 0.0005, 

0.0038, 0.97, 0.99) respectively. The optimum 

constant values (𝐶, 𝑎, 𝑏) for the TVLMS [19] was 

selected to be (2, 0.01, 0.7) respectively. The order of 

FIR adaptive filter (L) for all simulation was eight. 

The noise source used for simulation was white 

Gaussian noise with zero mean and various 

variances 𝜎2. The impulse response of the noise path 

ℎ(𝑛) was randomly chosen with eight coefficients. 

The utilized SNR is (𝑠(𝑛)/𝑣(𝑛)) and by changing the 

variance of the input signal, 𝑥(𝑛), we change the 

value of SNR. 

 

 
7.1. Mean Square Deviation 

In this section, the performance of MSD of the list 

of compared algorithms is evaluated. The aim of this 

evaluation is to investigate the performances of the 

algorithms with various scales of the variance of the 

input filter. We do so, by simulating each algorithm 

for 20000 number of samples and dedicating the first 

5000 samples to estimate the transient MSD value as 

well as the last 15000 samples to estimate the steady-

state MSD value. Fig. 2 and Fig.3 show the estimated 

transient and steady-state MSD for various SNR 

respectively. This action demonstrates the 

convergence speed and steady-state of the adaption 

process for each algorithm. 

As shown in these figures, except our proposed 

technique, the performance of each algorithm is 

inconsistent. Generally, each algorithm introduces a 

good performance at a particular power of input 

signal, which coincides with its parameters, and 

exhibits a poor performance at other levels of input 

power if compared with others. For instance, the 

NLMS algorithm has the lowest transient and steady-

state MSD at SNR equals -1dB but it has the highest 

transient and steady-state at SNR equals 12dB. Other 

examples, the outcomes of LMS and VSSLMS 

algorithms are also inconsistent. At 3dB the 
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VSSLMS algorithm outperforms the LMS algorithm 

in transient and steady-state MSD. 

 
Fig. 2. Steady-state MSD values versus SNR in the 

range (12, -1) dB for various algorithms. 

 
Fig. 3. Transient MSD values versus SNR in the 

range (12, -1) for various algorithms. 

However, LMS outperforms the former algorithm 

in transient MSD value at (12dB, 9dB) and so on to 

the other approaches. On the other hand, the proposed 

technique introduces a consistent achievement at 

various scales (SNRs) of input excitation. Moreover, 

the proposed algorithm outperforms the compared 

algorithms at all signal to noise ratios and its 

performance improved gradually as the input power 

increase. Because, as the input power increases the 

number of iterations required to achieve its minimum 

step size decreases. Consequently, this action 

provides fast convergence rate (due to the high input 

power) and maintains a low steady-state value of 

MSD (due to the minimum step size). 

 

 
7.2. Noise Channel Tracking 

The tracking ability to a time-varying unknown 

system for the list of compared algorithms is 

presented in this section. Eight coefficients noise 

channel changes every 2500 samples is generated in 

order to investigate the achievement of each 

algorithm at a high rate of changing of optimal 

coefficients (noise channel). Fig. 4, Fig. 5, Fig. 6, Fig. 

7, Fig. 8 and Fig. 9 show the coefficients update of 

the proposed algorithm, VSSLMS [17], LMS, NLMS 

[10], RVSSLMS [18], and TVLMS [19] at signal to 

noise ratio equals (-1dB) respectively. As shown in 

these figures, the proposed technique outperforms the 

compared algorithms in terms of achieving fast-

tracking to the noise path and also maintaining 

smooth filter coefficients around the actual 

coefficients of the noise path. This smoothness comes 

from the step size updating equation that dedicates a 

particular step size for each coefficient. This step size 

introduces its minimum value after each transition of 

the noise path maintaining a very low mean square 

deviation.  

 
Fig. 4. Noise Channel tracking of the AWILOG 

algorithm at SNR -1dB. 
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Fig. 5. Noise Channel tracking of the VSSLMS 

algorithm at SNR -1dB. 

 
Fig. 6. Noise Channel tracking of the LMS algorithm 

at SNR -1dB. 

 
Fig. 7. Noise Channel tracking of the NLMS 

algorithm at SNR -1dB. 

On the other hand, the other approaches exhibit 

high fluctuations filter coefficients around the actual 

coefficients of the noise path. These high fluctuations 

arise mainly from the common step size for each 

coefficient that shares the same amount of error 

signal or input power to all coefficients, 

consequently, this action increases the mean square 

deviation. In addition to that, some of the compared 

algorithms commence to mimic the original speech 

signal and introduce fluctuations which are 

proportional to the amplitude of the speech signal. 

This action represents an intrinsic challenge for these 

approaches. 

 
Fig. 8. Noise Channel tracking of the RVSSLMS 

algorithm at SNR -1dB. 

 
Fig. 9. Noise Channel tracking of the TVLMS 

algorithm at SNR -1dB. 

 

7.3. Error between Original Speech Signal 

and Cleaned Speech Signal 
In this section, the achievement of each algorithm 

is evaluated in term of its ability to reduce the error 

between Original Speech Signal (OSS), which is 

𝑠(𝑛) here, and the Cleaned Speech Signal (CSS), 

which is 𝑒(𝑛) in our application. Fig. 10, Fig. 11, and 

Fig. 12 show error between the OSS and CSS for the 

list of compared algorithms at a signal to noise ratio 

equal to 9dB. As shown in these figures, the proposed 

approach outperforms the compared algorithms in 

term of attaining the lowest difference or error 

between OSS and CSS. This action also manifests 

why the filter coefficients of the proposed approach 

are smooth and closed to actual noise channel. 

Conversely, other approaches are significantly 
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impacted by the non-stationarity of the speech signal 

and they commence to introduce a high error between 

OSS and CSS. 

 
Fig. 10. (a) Shows error between OSS and Cleaned 

Speech for AWILOG and NLMS at 9dB SNR, (b) 

shows error between OSS and Cleaned Speech for 

AWILOG and VSSLMS at 9dB SNR. 

 
Fig. 11. (a) Shows error between OSS and Cleaned 

Speech for AWILOG and LMS at 9dB SNR, (b) 

shows error between OSS and Cleaned Speech for 

AWILOG and TVLMS at 9dB SNR. 

 
Fig. 12. (a) Shows error between OSS and Cleaned 

Speech for AWILOG, and RVSSLMS at 9dB SNR, 

(b) shows OSS and Error of AWILOG, (c) Error 

between OSS and Cleaned Speech for AWILOG, 

VSSLMS, and RVSSLMS at 9dB SNR. 

Fig. 13, Fig. 14, and Fig. 15 show error between 

the OSS and CSS for the list of compared algorithms 

at a signal to noise ratio equal to 3dB. These figures 

again illustrate the consistency of the proposed 

technique to maintain a low error between OSS and 

CSS at a low signal to noise ratio. On the other hand, 

the compared algorithms exhibit a considerable 

deterioration in their outcomes as the signal to noise 

ratio decreases. For instance, LMS and VSSLMS 

approaches have the lowest performances and this 

emerges from their step size methods which 

significantly impact by a high noise input. 

 
Fig. 13. (a) Shows error between OSS and Cleaned 

Speech for AWILOG and NLMS at 3dB SNR, (b) 

shows error between OSS and Cleaned Speech for 

AWILOG and VSSLMS at 3dB SNR. 

 
Fig. 14. (a) Shows error between OSS and Cleaned 

Speech for AWILOG and LMS at 3dB SNR, (b) 

shows error between OSS and Cleaned Speech for 

AWILOG and TVLMS at 3dB SNR. 

 

 

7.4. MSE Learning Curve 
This section demonstrates the MSE learning 

curves of the list of compared algorithms. The MSE 

was calculated based on the difference between OSS 

and CSS in order to deeply demonstrate the effecting 

of the non-stationary speech signal on the final 

results. Fig. 16 and Fig. 17 show the MSE learning 
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curves of the compared algorithms at SNRs equal to 

9dB and 3dB respectively.  

 
Fig. 15. (a) Shows error between OSS and Cleaned 

Speech for AWILOG, and RVSSLMS at 3dB SNR, 

(b) shows OSS and Error of AWILOG, (c) Error 

between OSS and Cleaned Speech for AWILOG, 

VSSLMS, and NLMS at 3dB SNR. 

As obvious in these figures, the proposed 

algorithm possesses the lowest steady-state error and 

the fastest convergence time compared with other. 

Moreover, the MSE learning curve of the proposed 

technique shows a consistent decreasing toward zero 

as SNR decreases. On the contrary, other algorithms 

start to mimic the mean square (MS) of the original 

speech signal as SNR decreases and consequently, 

this leads to very high fluctuations of the adaptive 

filter coefficients around the actual coefficient of 

noise channel. 

 
Fig. 16. Shows MSE learning curves of the list of 

compared algorithms at 9dB SNR. 

 

 

8. Proposed Algorithm Performance vs 

Constant Parameters (𝜁, γ) 
 In this section, the performance of the proposed 

algorithm is investigated against its constant 

parameters (𝜁, γ). The investigation is based on 

examining its MSE learning curve performance with 

respect to various values of constant parameters (𝜁, 

γ). 

 
Fig. 17. Shows MSE learning curves of the list of 

compared algorithms at 3dB SNR. 

 
 

8.1. Constant Parameter (𝜁) 
The effect of the constant parameter 𝜁 on the MSE 

error learning curve of the proposed algorithm is 

demonstrated in this section. Fig. 18 shows MSE 

learning curve of the proposed approach for different 

values of constant parameter 𝜁 at SNR equals 9dB 

and γ =0.8. Although, 𝜁=0.00015 has the highest 

MSE it still shows the best achievement through all 

these simulations. As shown in this figure, 𝜁=0.0006 

has the best performance as compared to other 

values. 

 
Fig. 18. Shows MSE learning curves of the proposed 

algorithm for various (𝜁) values at 9dB SNR. 

Fig. 19 shows an important feature that 

characterizes our technique from others. As the SNR 

decreases to 3dB the variance of the input filter 

excitation increases making the variable 
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factor  𝑋𝑇(𝑛)𝑋(𝑛) of 𝜑(𝑛) handles the significant 

role in the step size updating equation and leaves the 

constant (𝜁) with no a considerable effect. This action 

simplifies the process of selecting the proper value of 

constant 𝜁. As shown in this figure, after 𝜁=0.0003 

the MSE learning curves approximately introduces a 

congruent behavior. That means the variable factor 

  𝑋𝑇(𝑛)𝑋(𝑛) has the predominant role at high input 

excitation. 

 
Fig. 19. Shows MSE learning curves of the proposed 

algorithm for various (𝜁) values at 3dB SNR. 
 

 
8.2. Constant Parameter (γ) 

The effect of the constant parameter γ on the MSE 

error learning curve performance of the proposed 

technique is manifested in this section. Fig. 20 and 

Fig. 21 show MSE learning curve of the proposed 

approach for various values of constant parameter γ 

at 9dB and 3dB SNRs respectively. The value of 

constant 𝜁 in this test is (0.00015). As shown in these 

figures, the behaviors of the learning curves are 

somewhat related to Fig. 18 and Fig. 19.  

 
Fig. 20. Shows MSE learning curves of the proposed 

algorithm for various γ values at 9dB SNR. 

 
Fig. 21. Shows MSE learning curves of the proposed 

algorithm for various γ values at 3dB SNR. 

The essential role of the parameter γ is to avoid 

the restricted value of log function and consequently, 

it works like a regulator factor. Its value shifts up or 

down the curve of log function. The similarity 

between Fig. 18 and Fig. 20 provides a very 

important mechanism that expedites the process of 

selecting parameters. This can be easily 

accomplished by fixing (γ) and changing (𝜁) to 

achieve the lowest error. That means one constant 

parameter needs to be optimized not more like other 

variable step size approaches. The same inferences 

can be applied to Fig. 19 and Fig. 21. 

 

 

9. Conclusions  
This work concentrates on improvement 

performance of conventional LMS and other 

VSSLMS approaches by proposing a new time 

varying step size LMS algorithm. The mean square 

deviation performance of a new time varying step 

size for different variances of white reference inputs 

in the context of adaptive noise cancellation was 

introduced. The new algorithm adopts the idea of 

utilizing a log-based time adjusting step size for each 

tap of the adaptive filter attempting to get better 

performance than LMS and other VSSLMS at 

various variances of the input signal. Each step size 

was adjusted according to the current and previous 

input excitation associated with each tap in a 

logarithmic behavior. We evaluated the proposed 

approach by comparing its transient and steady-state 

mean square deviation with other approaches at 

various variances of input excitation. Moreover, the 

evaluation is also done in term of the capability of an 

algorithm to track the coefficients of the actual 

system and the amount of deviation from these 

coefficients. In addition, the difference between the 

original speech signal and cleaned speech signal was 
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also considered in this work. Theoretical and 

computer simulation results show the superiority of 

the proposed approach in terms of attaining the 

fastest convergence time and maintaining the lowest 

MSD compared with other approaches. Moreover, 

the proposed algorithm exhibits the ability to 

maintain a consistent low value of MSD at high 

variances of the input signal when compared with 

others. 
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